公共教育学院(马克思主义学院)

数学家 洛必达

洛必达(Marquis de l'Hôpital,1661-1704)法国的数学家.1661年出生于法国的贵族家庭,1704年2月2日卒于巴黎。他曾受袭侯爵衔,并在军队中担任骑兵军官,后来因为视力不佳而退出军队,转向学术方面加以研。他早年就显露出数学才能,在他15岁时就解出帕斯卡的摆线难题,以后又解出约翰·伯努利欧洲挑战“最速降曲线”问题。稍后他放弃了炮兵的职务,投入更多的时间在数学上,在瑞士数学家伯努利的门下学习微积分,并成为法国新解析的主要成员。 洛必达的<<无限小分析>>(1696)一书是微积分学方面最早的教科书,在十八世纪时为一模范著作,书中创造一种算法(洛必达法则),用以寻找满足一定条件的两函数之商的极限,洛必达于前言中向莱布尼兹和伯努利致谢,特别是约翰·伯努利。洛必达逝世之后,伯努利发表声明该法则及许多的其它发现该归功于他。

洛必达的著作尚盛行于18世纪的圆锥曲线的研究。他最重要的著作是《阐明曲线的无穷小于分析》〔1696〕,这本书是世界上第一本系统的微积分学教科书,他由一组定义和公理出发,全面地阐述变量、无穷小量、切线、微分等概念,这对传播新创建的微积分理论起了很大的作用。在书中第九章记载著约翰‧伯努利在1694年7月22日告诉他的一个著名定理:「洛必达法则,则求一个分式当分子和分母都趋于零时的极限的法则。后人误以为是他的发明,故「洛必达法则」之名沿用至今。洛必达还写作过几何,代数及力学方面的文章。他亦计划写作一本关于积分学的教科书,但由于他过早去逝,因此这本积分学教科书未能完成。而遗留的手稿于1720年巴黎出版,名为《圆锥曲线分析论》。